Коллекторный двигатель- принцип работы и отличия от бесколлекторного двигателя

Содержание:

Части электродвигателя

Основные два элемента, которые в наибольшей степени характеризуют электрический двигатель это статор и ротор. Именно ротор электрической машины вращается в агрегате под воздействием магнитного поля, возникающего в статоре

Это магнитное поле создается непосредственно под влиянием третьего по важности компонента электромотора, его обмотке. Для создания магнитного поля необходимо соблюдение трех основных условий:

  1. Наличие не менее двух обмоток
  2. Обязательное отличие по фазам тока в обмотках
  3. Смещение оси обмоток в пространстве

Наличие в статоре двух обмоток говорит о том, что электродвигатель однофазный, а три обмотки характеризуют трехфазный электродвигатель.

Четвертый основной элемент любого электродвигателя это его корпус. Он изготавливается из сплава алюминия или из чугуна в зависимости от особенностей использования агрегата и высоты оси его вращения.

Ротор эл двигателя запрессовывается на вал под действием специального технологического процесса, его сердечник состоит из прессованных стальных листов, в пазы которого заливается металл, образуя стержни. С помощью торцевых колец эти стержни замыкаются накоротко. Название такой конструкции «беличья клетка». По краям корпуса находятся подшипниковые щиты, в которых, в свою очередь устанавливаются различные подшипники в зависимости от конструкции электродвигателя и особенностей его применения.

На заднем подшипниковом щите устанавливается вентилятор для охлаждения мотора, который закрывается защитным кожухом предотвращающим попадание инородных частиц. При работе от частотно регулируемого привода дополнительно устанавливается узел принудительной вентиляции.

В зависимости от способа установки электродвигателя он может иметь фланец с приводной стороны, а может и не иметь, при условии установки его только на лапы. На электродвигатели, которые требуют торможения,электромагнитный тормоз дополнительно устанавливается на общепромышленный электродвигатель. О дополнительных модификациях электродвигателей читайте в этой статье.

Для подключения двигателя используется коробка выводов или БОРНО, которая по умолчанию устанавливается в верхней части агрегата. Если того требует особенность установки , БОРНО можно разместить на боковой поверхности электромотора. Либо переставить лапы двигателя на боковую поверхность, что обеспечит расположение коробки выводов на боковой плоскости. Такая манипуляция возможна только на двигателях в алюминиевом корпусе.

Принцип работы коллекторного мотора

Электрический ток (DC или direct current), поступая на обмотки якоря (в зависимости от их количества на каждую по очереди) создает в них электромагнитное поле, которое с одной стороны имеет южный полюс, а с другой стороны северный.

Многие знают, что, если взять два любых магнита и приставить их одноименными полюсами друг другу, то они не за что не сойдутся, а если приставить разноименными, то они прилипнут так, что не всегда возможно их разъединить.

Так вот, это электромагнитное поле, которое возникает в любой из обмоток якоря, взаимодействуя с каждым из полюсов магнитов статора, приводит в действие (вращение) сам якорь. Далее ток, через коллектор и щетки переходит к следующей обмотке и так последовательно, переходя от одной обмотки якоря к другой, вал электродвигателя совместно с якорем вращается, но лишь до тех пор, пока к нему подается напряжение.

В стандартном коллекторном моторе якорь имеет три полюса (три обмотки) – это сделано для того чтобы движок не «залипал» в одном положении.

Коллекторные vs асинхронные двигатели

Вопрос – коллекторный двигатель или асинхронный – решаем первоочередно. Процесс несложный. Коллектором называется барабан, разделенный медными секциями, формой близкой прямоугольной, сделанными из меди. Формирует токосъемник, в коллекторных двигателях ротор всегда питается электрическим током. Постоянным, переменным – поле создается приложенным напряжением.

Коллекторный двигатель содержит минимум две щетки. Трехфазные встретим редко. Сведения о таких агрегатах описаны литературой середины прошлого века. Применялись коллекторные трехфазные двигатели, регулируя скорость вращения вала в широких пределах. Мотор указанного типа снабжен щетками, медным барабаном, разделенным секциями. Пропустить признак и невооруженным глазом затруднительно. Примеры коллекторных двигателей:

  1. Пылесос, стиральная машина.
  2. Болгарка, дрель, электрический ручной инструмент.

Коллекторные двигатели широко используются, обеспечивая сравнительно простой реверс, реализуемый переменой коммутации обмоток. Скорость регулируется изменением угла отсечки питающего напряжения, либо амплитуды. К общим недостаткам коллекторных двигателей относятся:

  • Шумность. Трение щетками барабана неспособно происходить бесшумно. При переходе секцией идет искрение. Эффект вызывает помехи радиочастотного диапазона, издается сонм посторонних звуков. Коллекторные двигатели сравнительно шумные. Потрудитесь вспомнить пылесос. Стиральная машина, выполняя режим стирки работает не так громко? Низкие обороты коллекторных двигателей хороши.
  • Необходимость обслуживания обуславливается наличием трущихся деталей. Токосъемник чаще загрязнен графитом. Попросту недопустимо, может замкнуть соседние секции. Грязь повышает уровень шума, прочие негативные эффекты.

Все хорошо в меру. Коллекторные двигатели позволят получить заданную мощность (крутящий момент), на старте, после разгона. Сравнительно просто регулировать обороты. Названа причина увлечения бытовой техники коллекторными разновидностями, асинхронные двигатели выступают сердцем оборудования, обладающего повышенными требованиями к уровню звукового давления. Вентиляторы, вытяжки. Серьезные нагрузки потребуют внесения серьезных конструктивных изменений. Повышаются стоимость, размеры, сложность, делая невыгодным изготовление.

Блог-помощника машиниста

Все электрические машины подразделяются по значению на два вида: Генераторы, Двигатели. Принципиально, что генераторы, что двигатели устроены одинаково.

Генераторы— при вращение ветка его рабочие стороны пересекают магнитные селевые линии полюсов, поэтому в них индуктируется ЭДС. Если к ветку подсоединить проводники и нагрузку (потребитель лампочка) то в цепи пойдет электрический ток. Этот ток будет направлен также как и ЭДС. Этот ток образует собственное магнитное поле и при этом он образует силы, действующие на проводники по направлению определяемой правилами левой руки. Эти силы создают электромагнитный вращающий момент, и он направлен в сторону противоположную вращению проводников, поэтому он является тормозным моментом. Для того чтобы предотвратить остановку якоря требуется приладить внешний вращающий момент противоположный тормозному моменту и больший по величине.

Условиями работы электрических генераторов является;

  1. Совпадение по направлению тока и ЭДС что указывает, что машина отдает электрическую энергию (мощность).
  2. Возникновение электромагнитного тормозного момента, из которого вытекает необходимость в получение извне механической энергии.

Двигатель — если подключить проводникам якоря к источнику тока, то по проводнику начинает происходить электрический ток. Этот ток будет создавать собственное магнитное поле, которое взаимодействие с магнитным полем полюсов будут, выталкивается, в результате совместного действия этих сил создается вращающий момент, который приводит якорь с проводниками во вращения. Одновременно при вращение подводников якоря в магнитном поле в каждом проводнике, индуктируется, ЭДС который определяется правилами правой руки. Следовательно, это ЭДС направлено против тока от внешнего источника, то есть она препятствует прохождения тока по проводникам. По этой причине для электродвигателей ее называют противно – ЭДС. Для того чтобы якоря продолжал, вращается и создавал требуемый момент (сила тяги) необходимо прикладывать к электродвигателю внешнее напряжение направленное на встречу против – ЭДС и больший по величине.

Условия работы электродвигателей.

  1. Совпадение по направлению электромагнитного момента и частоты вращения якоря это характеризует отдачу машиной в механической энергии.
  2. Возникновение в проводниках якоря против – ЭДС направлено против внешнего напряжения и тока и с него вытекает необходимость потребления извне электрической энергии.

Назначение коллектора. При вращение рамки в магнитном поле индуктированная в нем ЭДС непрерывно изменяется по величине и направлению, а соответственно изменяется и ток во внешней цепи по тому же самому закону. Для получения во внешней цепи постоянного по направлению тока концы рамок подсоединяют к полукольцам. А для того чтобы получить постоянный по величине ток применяют большое количество рамок. Такую конструкцию называют, коллектором и его назначение является выпрямление переменной ЭДС получаемой в рамке.

Коллектор позволяет сохранить в постоянном направлением тока и напряжение во вешней электрической цепи действующую между щетками несмотря то, что в витке якоря ЭДС и ток изменяется дважды за один полный оборот рамки. Коллектор предназначен для соединения якорной обмотки с внешней цепью.

Условные обзначения

Главный плюс силы обмотка возбуждения.

Веток -1 конвенционная машина (только в мощных)

Веток-2 обмотка дополнительного полюса (практически во всех машинах)

Веток-3 обмотка последовательного возбуждения (машины последовательного возбуждения)

Веток-4 обмотка независимого сил параллельного возбуждения.

Ротор коллекторного двигателя

Ротор коллекторного двигателя состоит из вала, на который насаживается сборный магнитопровод. С одной стороны, на вал крепится коллекторный узел, с другой, лопасти вентилятора. Для обеспечения лёгкого вращения и для фиксации в корпусе на вал с двух сторон надеваются подшипники. Для нормальной работы электродвигателя, необходимо чтобы ротор был отлично сбалансирован. Потому к изготовлению этой части подходят особенно скрупулёзно.

Подвижная (вращающаяся) часть

Роторная обмотка

Сердечник ротора собирается из металлических пластин, отштампованных из магнитного металла. Толщина пластин 0,35-0,5 мм, каждая из них залита слоем диэлектрического лака, для избавления от паразитных токов. Пластины по внешнему краю имеют пазы, в которые затем укладываются витки медной проволоки. Эти пластины насаживаются на вал и закрепляются на нём, собирается пакет требуемого размера. Эта система является магнитопроводом.

Так выглядит ротор коллекторного двигателя

В пазы магнитопровода укладывается витки медного обмоточного провода. Выходы обмоток выводятся на коллекторный узел, где и происходит их переключение.

Как устроен коллекторный узел и как он работает

Коллекторный узел стоит рассмотреть подробнее. Иначе понять, как вращается ротор, сложно. Коллектор имеет цилиндрическую форму и набран из медных пластин (иногда называют ламелями), которые изолированы друг от друга слюдяными или текстолитовыми прокладками. Нет электрического контакта и с осью вала, к которому он крепится.

Коллектор имеет вид цилиндра, который набран из медных пластин. Пластины сделаны в виде секторов, разделены диэлектрическими прокладками

Получается, коллектор собран из медных секторов и без обмотки электрически друг с другом не связанных. К каждой пластине коллектора крепится вывод одной рамки обмотки ротора. К плоскости двух противоположных рамок коллектора прижимается две щетки. Они плотно прилегают к поверхности медной пластины коллектора, что даёт хороший контакт. На эти щётки подаётся потенциал, который и передаётся в тот виток обмотки ротора, который подключён к этим пластинам.

К парным пластинам коллектора прижимаются графитовые щетки

Так как ротор с некоторой скоростью вращается, одна пара пластин сменяется другой. Таким образом, напряжение передаётся на все обмотки ротора. При этом возникающие друг за другом поля поддерживают вращение ротора, «проталкивая» его в нужном направлении.

Схема коллекторного двигателя — переменного тока

В данном рисунке представлена универсальная схема коллекторного двигателя рис.2. Схема имеет три вывода проводов от двух обмоток статора, для подключения как к переменному так и к постоянному напряжениям, то-есть, двигатель способен работать как от постоянного так и от переменного тока. рис.2

На схеме даны следующие обозначения:

Два конца провода из трех выводов обмоток статора необходимы так-же для подключения сглаживающего фильтра конденсатора.

Сопротивление обмоток — коллекторного двигателя

Для замера сопротивлений обмоток статора коллекторного двигателя нужно соединить поочередно щупы измерительного прибора с выводами проводов фото 2.

Замеры сопротивлений обмоток статора выполняются с целью определения их целостности либо разрыва перегорания провода в обмотке.

Чтобы измерить сопротивление обмоток ротора коллекторного двигателя, — выполняется замер сопротивления ламелей начала и концы обмоток ротора, соединенные с металлическими пластинами — на коллекторе фото 3, рис. 3.

И чтобы проверить отсутствие либо замыкание обмотки на корпус магнитопровода ротора, нужно соединить один конец щупа прибора с пластиной коллектора и второй щуп соединить с магнитопроводом рис. 4.

При замыкании обмотки ротора на корпус магнитопровода — сопротивление для данного участка приймет нулевое значение.

В данной теме Вы ознакомились с устройством и способами проведения диагностики коллекторного электродвигателя, и это далеко еще не все.

В конструкции современного автомобиля задействован коллекторный двигатель, агрегат, использующий контакты с целью определения положения нахождения ротора.Текущие тенденции на мировом рынке автомобилестроения сводятся к полной замене силовых установок, работающих за счет внутреннего сгорания топлива на электрические моторы. За последние годы, призывы к увеличению планки по количеству вредных выбросов в атмосферу, звучат, чуть ли не ежедневно, а это укрепляет позиции электрических агрегатов.

Принцип работы электрического двигателя, преобразовать электрическую энергию в механическую работу. Если сравнивать агрегаты с двигателями внутреннего сгорания, электрические моторы предпочтительней, преимущество: компактность, простота, долговечность, экологически безвредны и масса других плюсов.

В конструкции современного автомобиля задействован коллекторный двигатель, агрегат, использующий контакты с целью определения положения нахождения ротора.

Электромобиль Tesla model S:

Трехфазные коллекторные электродвигатели

Эти агрегаты подключаются к трехфазной сети. У них обмотка возбуждения обладает качествами шунтового двигателя. Ротор движка подает питающее напряжение на механизм. Основную рабочую функцию выполняет роторная обмотка, подключенная к сети переменного напряжения с помощью токосъемных контактных колец. Статорная обмотка, расположенная в роторных пазах вместе с основной, всеми фазами соединяется с коллектором движка. Каждой фазе соответствуют определенные щетки, которые раздвигаются и сдвигаются с помощью подвижных траверс.

Для работы механизма в режиме асинхронного двигателя щетки устанавливаются на одни и те же пластины коллектора. Но, в отличие от асинхронного агрегата, в коллекторном двигателе роль первичной обмотки играет роторная обмотка, а роль вторичной обмотки – статорная. ЭДС в механизме создается за счет раздвижения щеток. ЭДС вызывает в статоре ток, который создает и определяет момент вращения механизма.

Для регулировки скорости в коллекторную цепь вводится отсутствующая мощность. Используя трансформаторную связь между обмотками, мощность статора возвращается в электрическую сеть, создавая эффект, позволяющий регулировать количество оборотов вала в экономном режиме. При раздвижении щеток на определенное расстояние частота вращения соответственно увеличивается или уменьшается.

Если щетки, соответствующие своим фазам, смещаются, ЭДС изменяется по фазе. Это дает возможность регулирования cosφ. Его качество повышается, когда значение скорости меньше синхронной, а щетки смещаются в противоположную направлению движения ротора сторону.

Электродвигатели, работающие от трехфазной сети, чаще всего применяются в полиграфии (на ротационных машинах), текстильной и легкой промышленности (на прядильных станках), металлургии (на металлорежущих станках).

Основной недостаток трехфазных агрегатов – плохие коммутационные условия. Это вызывает трудности при получении трансформаторной ЭДС, поскольку повышенная мощность приводит к увеличению магнитного потока. Поэтому в редких случаях для повышения ЭДС и экономичного регулирования количества оборотов вала в цепь вводится асинхронный электродвигатель.

Коллектор двигателя автомобиля

Данный вид этого устройства является неотъемлемой частью любого автомобиля. Его основным назначением является отвод уже отработанных ранее газов от общей системы цилиндров. Таким образом он защищает автомобиль от их негативного воздействия и продлевает срок его безопасной эксплуатации.

В настоящий момент времени выделяют два основных вида таких коллекторов:

  • Трубчатый выпускной коллектор. Материалом для его изготовления является нержавеющая сталь либо же керамика. Сама работа такого устройства напоминает колебательный процесс.
  • Выпускной коллектор цельный. Материалом для его изготовления является чистый чугун. Но при этом эффективность работы такого коллектора ниже, чем у трубчатого, поэтому в последнее время он все реже и реже используется производителями.

Минусы коллекторных моторов

Сами по себе коллекторные моторы неплохо справляются со своей работой, но это лишь до того момента пока не возникает необходимость получить от них на выходе максимально высокие обороты. Все дело в тех самых щетках, о которых упоминалось выше. Так как они всегда находятся в плотном контакте с коллектором, то в результате высоких оборотов в месте их соприкосновения возникает трение, которое в дальнейшем вызовет скорый износ обоих и в последствии приведёт к потере эффективной мощности эл. двигателя. Это самый весомый минус таких моторов, который сводит на нет все его положительные качества.

Принцип работ и конструктивные особенности

Устройство это достаточно специфичное, обладающее в силу схожести с машинами постоянного тока, похожими характеристиками и присущими им достоинствами.

Отличие от двигателей постоянного тока состоит в материале корпуса статора, изготовленном из листов электротехнической стали, благодаря чему удается добиться снижения потерь на вихревые токи.

Эти двигатели, называемые универсальными благодаря тому, что работают они от переменного и постоянного тока, бывают одно- и трехфазными.

Видео: Универсальный коллекторный двигатель

Замена коллектора электродвигателя своими силами

Совместительство при вредных условиях труда в здравоохранении

Из материнского капитала можно снять 25000 в 2020 году

Продадут ли 20 летнему парню в расрочку телефон

Порядок заготовки валежника

Можно ли за другого человека оформить получение прав на госуслугах

Код в расчетке 382

Инфо

Если да то почистите.

Наличие характерного запаха горения изоляции проводов.

Если обнаружено визуально повреждение обмотки стартера или якоря, то их потребуется заменить на новые или сдать в перемотку. Но не всегда визуально возможно определить повреждение обмоток, поэтому следует воспользоваться мультиметром для этих целей.

Виды коллекторных двигателей

В зависимости от источника тока, к которому подключается мотор, коллекторные установки делят на два вида:

  • Работающий от источника постоянного тока. Используются в автомобилях, самоходной технике, детских игрушках и т.д. Отличаются простотой конструкции. Подключаются только к источнику постоянного тока;
  • Универсальный коллекторный двигатель. Работает как от постоянного, так и от переменного тока. Применяется в бытовых электрических приборах.

СПРАВКА: Универсальный коллекторный силовой агрегат отличается простотой конструкции и небольшими габаритно массовыми параметрами. Благодаря этому может быть использован в качестве силовой установки ручного инструмента.

В зависимости от максимальной мощности силовые установки делятся на три типа:

  1. Небольшой мощности. Используются в детских игрушках, аудио – видеотехнике и т.д. Напряжение питания таких установок составляет от 1.5 до 9 Вольт. Оси якоря устанавливаются на специализированные втулки. Они играют роль подшипников скольжения. Токопроводящие щетки выполнены в виде двух пластин;
  2. Средней мощности. Якорь устанавливается на втулках или подшипниках. Применяются на автомобильной и самоходной технике. Напряжение питания составляет от 12 до 24 вольта;
  3. Высокой мощности. Отличаются высокими показателями мощности и наличием электрических магнитов.

Неисправности

Как и любая другая механическая деталь, впускной коллектор подвержен поломкам. Учитывая простоту конструкции, вариантов неисправностей не так много.

Основные:

  • Нарушение герметичности. Вибрации, давление и высокие температуры со временем уничтожают уплотнители. Разгерметизация влияет на качество топливной смети, потерю тяги и оборотов. Проблема решается заменой прокладок, после чего работа двигателя должна нормализоваться;
  • Загрязнение коллектора. Налет скапливается на стенках, постепенно уменьшая сечение проходящих воздушных масс. Требуется разборка и чистка трубок, дросселя и камеры нагнетания;
  • Механические повреждения. Если коллектор изготовлен из пластика, тот тут только замена. Если из алюминия и повреждения невелики, поможет аргонодуговая сварка;
  • Чрезмерная температура в коллекторе. Причин масса и искать их нужно в системе охлаждения, засоренном радиаторе, испорченном датчике, ошибке ЭБУ. Также высокая температура бывает из-за банальной жары на улице;
  • «Хлопки». При формировании топливной смеси, система должна быть герметична. Если есть нарушения в системе зажигания, механизме газорапределения, проблемы в камере образования топливной смеси или нарушена герметичность самого впускного коллектора, можно услышать те самые хлопки. Искать причины стоит во всех вышеперечисленных местах.

В последнем случае, конечно, проще положиться на ошибки, о которых сообщает ЭБУ или записаться на комплексную диагностику в сервисе.

Двигатель постоянного тока: коллекторный или бесколлекторный?

Идеальных решений в инженерии не существует, однако подобрать оптимальный вариант, который будет наилучшим образом соответствовать поставленным целям и задачам, можно всегда. Перед разработчиками любого оборудования, от простейшего до самого сложного, всегда стоит множество задач, которые требуют решения, и многие из них представляются в формате «или/или». Так, при использовании в механизмах электродвигателей постоянного тока часто возникает вопрос: отдать предпочтение коллекторному (щёточному) или бесколлекторному (бесщёточному) агрегату?

Коллекторные двигатели постоянного тока

Применение щёточных электродвигателей постоянного тока актуально в устройствах, работающих на умеренных и низких скоростях. Их основными преимуществами являются экономичность, простота использования и отсутствие встроенной электроники, благодаря которому двигатели такого типа легко справляются с кратковременными перегрузками.

Для обеспечения длительного срока службы коллекторному электродвигателю требуются грамотная эксплуатация и квалифицированное обслуживание: так, важно учитывать, что при работе такого двигателя на чрезмерно высоких скоростях щётки могут лететь с коллектора, а прохождение через механизм тока определённой плотности может стать причиной выгорания щёток. При эксплуатации коллекторного двигателя постоянного тока может потребоваться использование дисульфида молибдена или карбоната лития

Наличие щёток и коллектора сказывается на габаритах устройств: они значительно больше и тяжелее бесщёточных механизмов. Необходимость регулярного обслуживания ограничивает возможности свободной установки электродвигателя, делая необходимостью его размещение в доступном месте. Внутреннее расположение ротора усложняет теплообмен, а падение напряжения на щётках неминуемо ведёт к снижению эксплуатационных свойств электродвигателя.

Трение щёток о коллекторные контакты, неминуемо возникающее при работе щёточного электродвигателя, приводит к таким негативным последствиям, как снижение эффективности, высокий уровень шума, возникновение электромагнитных помех и возникновение искр: именно по этой причине коллекторные двигатели постоянного тока никогда не используются для работы во взрывоопасной среде.

Бесколлекторные двигатели постоянного тока

Отсутствие в бесколлекторных электродвигателях (BLDC) коллектора и щёток делает их более лёгкими и компактными, сокращает необходимое обслуживание до минимума и даёт ротору возможность вращения на более высокой скорости. Таким образом, отсутствие «проблемных» деталей лишило бесщёточные электродвигатели недостатков, свойственных щёточным агрегатам. Тем не менее, бесколлекторные двигатели имеют свои недочёты, главные из которых – конструктивная сложность и наличие встроенной электроники, делающее такие механизмы более дорогими, чем коллекторные.

Таким образом, выбирая между коллекторным и бесколлекторным двигателем постоянного тока, опираться нужно на такие факторы, как:

— финансовые возможности;— требования к характеристикам устройства;— наличие возможности обеспечения квалифицированного обслуживания;— сфера применения (учитываются шумность, возможность возникновения искр).

Широкий выбор щёточных и бесщёточных электродвигателей постоянного тока представлен в каталоге торгового дома Степмотор.

Источник

Особенности двигателя на биотопливе

Необходимо отметить, что на данный момент практически не идет речи о двигателе, который бы полностью работал на биоэтаноле. Это объясняется целым рядом объективных ограничений, для преодоления которых еще не найдено эффективных решений.

На сегодняшний день биотэанол применяется для заправки автомобилей, главным образом, в смеси с традиционными видами топлива – бензином и соляркой. Работать на таком топливе могут только транспортные средства с двигателем типа FFV (Flexible-fuel vehicle – гибкий выбор топлива).

Мотор типа FFV представляет собой двигатель внутреннего сгорания, который имеет некоторые отличия от традиционных двигателей. Так, основными отличительными особенностями являются:

  • наличие специального датчика кислорода;
  • применение особого материала для изготовления ряда прокладок;
  • программное обеспечение ЭБУ, позволяющее определять процент содержания спирта в топливе и соответствующим образом корректировать работу мотора;
  • некоторые изменения в конструкции для увеличения степени сжатия, что необходимо в связи с более высоким октановым числом этанола, по сравнению с бензином.

Сегодня автомобильное топливо с содержанием биоэтанола пользуется достаточно высокой популярностью в целом ряде стран. Лидерами здесь выступают США и Бразилия. В Бразилии сегодня практически невозможно купить бензин, в котором содержание биоэтанола было бы менее 20 %. Популярна данная технология и в ряде стран Европы, особенно в скандинавских странах.

Возможные неисправности коллекторного электродвигателя

Иногда даже люди, знакомые с устройством механизма, слабо представляют, как проверить коллекторный электродвигатель. Ниже мы расскажем обо всех возможных неисправностях и способах их выявления и устранения.

Нарушение контактов. На него указывает активное искрение.
Межвитковое замыкание (замыкание обмоток в коллекторе). Оно также вызывает искрение.
Износ щеточно-коллекторного узла. При этом он чернеет и появляется искрение. Обычно проблема решается путем замены старых элементов на новые. Чтобы снять узел, отодвиньте фиксатор и открутите крепежный болт (в зависимости от модели двигателя).
Потемнение контактной части коллектора. Часто достаточно зачистить его мелкой наждачной бумагой.
Образование канавки в месте контакта щеток с коллектором. Необходимо выполнить проточку узла на станке.
Износ подшипника. Эту неисправность можно определить по усиленной вибрации корпуса во время работы двигателя и биению патрона. В этом случае требуется замена подшипника.
Касание якорем статора. Иногда хватает замены якоря, но в некоторых случаях придется заменить и якорь, и статор.
Сбой управления на микроконтроллере. Установка нового микроконтроллера – оптимальное решение проблемы.
Выгорание или обрыв обмоток

Обратите внимание на их цвет и целостность. Почернение всего корпуса обмоток или их части указывает на выгорание, обрыв легко определяется при визуальном осмотре

В этом случае требуется их замена или перемотка.
Графитовая пыль в пространстве между ламелями. Вашему прибору просто нужна прочистка.
Выгорание изоляции проводов. На эту проблему укажет характерный запах.

Во всех вышеуказанных случаях восстановление коллектора электродвигателя своими руками вполне возможно при наличии необходимых запчастей и инструментов. Только если у вас нет опыта в перемотке обмоток, лучше обратиться в соответствующий сервис. После устранения неполадок соедините все детали в обратном порядке.

Устройство

Хотя со стороны впускной коллектор кажется лишь трубопроводом специфической формы, на деле над его геометрией работает целая команда инженеров, рассчитывая сечение, длину и объем.

Плюс к этому в его состав входят:

  • Дроссельная заслонка;
  • Приточная камера;
  • Воздушный фильтр;
  • Впускной клапан;
  • Камера нагнетания.

Для двигателей с распределенным впрыском топлива, во впускной коллектор дополнительно устанавливают инжекторы, из-за чего смешение топливных и воздушных масс происходит прямо в камере нагнетания.

Сам трубопровод может объединять от 2 до 12 каналов, в зависимости от количества цилиндров в блоке двигателя. При этом для 4-цилиндрового мотора иногда используется коллектор с тремя трубами.

Также стоит отметить, что большинство современных впускных коллекторов последние 5 лет изготавливают из специального высокотемпературного пластика, тогда как выпускной коллектор все еще может быть выполнен только из металла.

Главные проблемы стиральных машин

Если Вы интересовались этим вопросом в Интернете, то наверняка видели подобные жалобы: «Вот, третий год эксплуатации, и я слышу скрежет во время стирки. Говорят, что подшипник барабана барахлит. Ремонтировать? Проще новую купить».

И такие отзывы – не редкость. Реклама же продолжает кормить обещаниями, из-за чего можно ненароком переплатить за бренд, что тоже неприятно.

Итак, окиньте взглядом ассортимент стиральных машин и постарайтесь не обольщаться в первые секунды маркетинговыми фишками. Знаем мы компании, которые заманивают сенсорными экранами и футуристическими формами. Но у Вас цель – выбрать долговечную стиралку. Это как женитьба – чтобы раз, и на всю жизнь. Поэтому спокойно диагностируем будущую избранницу. Важен мотор и только мотор – без преувеличения сердце стиральной машины.

Ассорти моторов

Назначение

Самым редким из всех видов коллекторов является нефтяной или газовый, либо же их симбиоз. По своей сути, это даже не устройство, а специальное естественное хранилище или полость в горной породе, в которой и происходит аккумулирование данных полезных ископаемых. Именно в процессе непосредственных работ по добыванию нефти и газа они и выкачиваются из коллекторов, или проще говоря месторождений.

При этом следует понимать, что далеко не каждая горная порода может играть роль коллектора. Существует масса способов определения того, относится ли она к их категории или нет. Так, в частности, определяется плотность самой породы, ее толщина, возраст и проницаемость.

Другой разновидностью коллектора является отопительное устройство, которое имеется практически в каждом доме. Его основным назначением является контроль над обогревом и температурой как всего здания в целом, так и каждого его конкретного помещения.

По своему внешнему виду он весьма напоминает металлическую гребенку, внутри которой расположена арматура, которая и является ответственной за отопительный процесс. Сегодня обогрев любого многоквартирного дома очень сложно представить себе без использования данного устройства.

Но есть определенная категория граждан в нашей стране, которая точно знает, что такое коллектор. И это автолюбители и сами водители.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ

Независимо от типа электрической машины (синхронная или асинхронная, коллекторная или бесколлекторная) все они обладают следующими техническими характеристиками:

  • количество рабочих фаз – одна или три (за исключением шаговых моделей);
  • мощность электрическая и на валу;
  • схемы соединения обмоток («звезда» или «треугольник»);
  • класс защиты оборудования.

В однофазных машинах запуск осуществляется либо вручную, либо в них предусматривается специальная пусковая обмотка (фазосдвигающая цепочка с конденсатором).

В 3-х фазных агрегатах вращающееся э/м поле создается тремя независимыми катушками, размещенными на статоре под углом 120 градусов одна к другой. Соответствующие им ЭДС разнесены в электрическом пространстве на те же углы.

Виды мощности:

1. Электрической называют мощность, потребляемую от сети фазными обмотками двигателя в рабочем режиме.

2. Механическая мощность на валу – развиваемое ЭПТ вращательное усилие, измеряемое в Ваттах и характеризующее эффективность преобразования или КПД всего двигателя.

Схема включения обмоток выбирается с учетом особенностей конструкции агрегата и условий его работы. Чаще всего в бытовом электрооборудовании и инструменте применяется схема включения типа «звезда».

Класс защиты электродвигателей от проникновения внутрь механических частиц грязи, а также от попадания влаги устанавливается согласно стандарту EN 60034.

Для его обозначения используют две английские буквы IP со следующими за ними цифрами. Первая соответствует уровню защиты от попадания твердых частиц, а вторая – от проникновения во внутрь влаги.

Конструкция универсального электродвигателя

Конструкция универсального коллекторного электродвигателя не имеет принципиальных отличий от конструкции коллекторного электродвигателя постоянного тока с обмотками возбуждения, за исключением того, что вся магнитная система (и статор, и ротор) выполняется шихтованной и обмотка возбуждения делается секционированной. Шихтованная конструкция и статора, и ротора обусловлена тем, что при работе на переменном токе их пронизывают переменные магнитные потоки, вызывая значительные магнитные потери.

Секционирование обмотки возбуждения вызвано необходимостью изменения числа витков обмотки возбуждения с целью сближения рабочих характеристик при работе электродвигателя от сетей постоянного и переменного тока .

Универсальный коллекторный электродвигатель может быть выполнен как с последовательным, так и с параллельным и независимым возбуждением.

В настоящее время универсальные коллекторные электродвигатели выполняют только с последовательным возбуждением .

Таким образом, результирующий электромагнитный момент при работе двигателя от сети переменного тока пульсирует. Пульсации электромагнитного момента практически не нарушают работу двигателя. Объясняется это тем, что при значительной частоте пульсаций электромагнитного момента () и большом моменте инерции якоря вращение последнего оказывается равномерным.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector