Подробно о щелочных аккумуляторах

Использование батарей SBS

Указанные щелочные аккумуляторные батареи (1.2 вольта) очень чувствительны к механическим повреждениям. В данном случае никелевые электроды располагаются рядом с сепараторами. Иногда пластик между ними может залипать. В такой ситуации следует сразу сменить электролит. Однако в первую очередь проверяется напряжение устройства. В среднем указанный параметр обязан составлять 2 В. После смены электролита не нужно сразу заряжать. Минимум следует подождать два часа. После этого проводится растренировка

На этом этапе важно проверить плотность соединений

Также нужно уделить внимание контактам

При обнаружении соли необходимо воспользоваться тряпкой. После растренировки следует снова проверить номинальное напряжение аккумуляторных батарей. Если данный показатель не превышает 2 В, устройства не могут эксплуатироваться. Многие специалисты рекомендуют заряжать их слабым током. В этом случае снижение емкости происходит быстро. В некоторых случаях батареи приходят в непригодность из поломанного токопровода. Тогда следует обращаться в сервисный центр. Заряжать указанную модель разрешается от любого источника.

Щелочной аккумулятор — что это?

Щелочными они называются из-за типа электролита. Обычно в его состав входят щелочные растворы металлов — и это вне зависимости от типа аккумулятора или его предназначения. Как правило, это железо с добавлением никеля, но встречаются и варианты с наличием других примесей.

Отработанные аккумуляторы ждут переработки

Корпус у щелочных аккумуляторов обычно металлический, реже — из пластика. Состав пластин — металл с добавлением никеля. В любом случае, отдельные элементы аккумулятора вставляются в резиновые или пластмассовые кожухи — это уже чтобы не протек электролит.

https://youtube.com/watch?v=yFErMhqqmjo

Современные источники питания на щелочи

Плюсы и минусы щелочных аккумуляторов

Плюсы:

  • Длительное хранение в полностью разряженном состоянии никак не влияет на характеристики аккумулятора.
  • Низкие температуры не влияют на качество работы.
  • Большая энергоемкость.
  • Сравнительно небольшой вес.

Минусы:

  • Конструкция состоит из множества блоков, соответственно имеет большие габариты.
  • Небольшой КПД – всего 55%.
  • Наличие эффекта памяти, приводящего к потере ёмкости.
  • Сравнительно высокая цена.

Срок службы щелочных аккумуляторов достаточно большой

Факторы, сокращающие срок службы

  • систематические недозаряды;
  • глубокие разряды ниже конечных напряжений;
  • снижение уровня электролита ниже верхнего края пластин;
  • повышение температуры.

https://youtube.com/watch?v=sr4Flcv0GHA

Щелочные аккумуляторные батареи особенности эксплуатации

Преимущества и недостатки

Аккумуляторы щелочного принципа действия отличаются:

  • Длительным сроком эксплуатации при должном обслуживании;
  • Имеют относительно небольшой вес и размеры;
  • Позиционируются с небольшим самопроизвольным разрядом;
  • Стабильной работой в условиях отрицательных t.

В сравнении со свинцово-кислотной батареей – этот показатель выше в 2 раза. Хотя при низких t, как отмечалось ранее, показатели ёмкости сокращаются.

К существующим минусам можно отнести незначительный коэффициент полезного действия (КПД), который по разным оценкам составляет от 50% до 55%. К сравнению, этот показатель у батарей кислотного принципа действия составляет 80%.

К тому же, наличие эффекта памяти неизбежно приводит к потере ёмкости. Она может появиться в случае неполной разрядки зарядного устройства.

Огорчает большой разброс рабочего напряжения зарядных элементов: 1-1,75 Вольта. Для набора показателя 12В разброс составит 10-17,5 вольта. В данном случае не избежать использования зарядного устройства для щелочного аккумулятора в целях стабилизации рабочих показателей.

Учимся готовить щелочной электролит

В завершение сегодняшнего материала о щелочных электролитах для АКБ не лишним будет обратить внимание на то, как сделать таковые дома. Для достижения подобной цели, в первую очередь, необходимо подготовить:

  • исходные материалы для приготовления электролита: дистиллированная вода (ГОСТ 6709-72), кали едкое КОН сорта А,В (ГОСТ 9285-69) и гидрат окиси лития Li(OH)3 (ГОСТ 8595-75);
  • железная, чугунная или пластмассовая тара с наличием плотных крышек;
  • аналогичные предметы для размешивания раствора;
  • ареометр – прибор, который требуется для измерения плотности приготовленного электролита.

Непосредственно приготовление щелочного электролита осуществляется так:

  1. В сосуд вливается необходимое количество дистиллированной воды;
  2. Аккуратными движениями в жидкость либо наливается щёлочь, либо кладётся стальными шпицами;
  3. После этого раствор размешивается специальными приспособлениями, и его плотность корректируется под необходимые показатели посредством использования ареометра, а также добавления тех или иных веществ в электролит.

Приготовленный электролит разливается в стеклянные тары, которые закрываются плотными резиновыми пробками. Хранить щелочной электролит желательно вдалеке от детей и солнца. Помимо этого, ёмкости с субстанцией стоит соответствующе пометить.

На этом, пожалуй, по рассматриваемому сегодня вопросу наиболее важные положения подошли к концу. Как видите, щелочной электролит – важнейшая составляющая одноименных аккумуляторов, требующая систематичной проверки и замены. Надеемся, представленный выше материал был для вас полезен. Удачи в ремонте автомобиля и на дорогах!

О восстановлении бытовых щелочных батареек

Здесь все гораздо проще, чем с большими аккумуляторами. Для того, чтобы минимизировать потерю емкости в результате разрядов, батарейку надо восстанавливать, или тренировать.

Схема «тренировки» выглядит так:

  1. Разрядить АКБ до напряжения меньше вольта (примерно 0,8).
  2. До вольта довести током в десять процентов емкости элемента.
  3. Далее увеличить ток до 30% его электроемкости и заряжать около трех или четырех часов.
  4. Для сильно разряженных аккумуляторов стоит произвести такую зарядку несколько раз подряд.

Щелочная АКБ — это вещь, которая требует к себе не слишком частого внимания, но осторожного обращения. Если обеспечить их в полной мере, то можно получить в свое распоряжение надежное и стабильное устройство, которое будет радовать бесперебойной работой в течение долгих лет и полностью оправдает свою цену, даже если придется приплатить за батарею от известной фирмы

https://youtube.com/watch?v=4qmRG9jnDx4

Режимы заряда.

Существует три
вида заряда аккумуляторов и аккумуляторных
батарей: нормальный, усиленный и
форсированный.

Нормальный заряд.
При нормальном заряде аккумуляторам и
аккумуляторным батареям сообщают заряд
нормальным зарядным током в течении 6
ч. Для ламельных НК-аккумуляторов ток
нормального заряда численно равен одной
четверти номинальной емкости. У некоторых
безламельных аккумуляторных батарей
время нормального заряда может быть
больше или меньше 6 ч. Например, время
нормального заряда аккумуляторной
батареи 2НКБ-2 составляет 10 ч, а батареи
10НКБ-60 — 4,5 часа.

Нормальный заряд,
который проводится в целях контроля
емкости аккумуляторных батарей,
называется контрольным.

Усиленный заряд.
Усиленным зарядом называется заряд
аккумуляторов и аккумуляторных батарей
нормальным или увеличенным зарядным
током в течении 12 ч. Усиленный заряд
применяется для восстановления или
поддержания номинальной величины
емкости аккумуляторов и аккумуляторных
батарей в следующих случаях:

а). при приведении
в рабочее состояние;

б). при подготовке
к хранению;

в). после смены
электролита;

г). после глубоких
разрядов ниже допустимых конечных
напряжений
(1 В на аккумулятор или элемент
аккумуляторной батареи) или разрядов
малыми токами, чередующимися с длительными
перерывами в работе;

д). при нерегулярной
работе.

Усиленный заряд
проводится в один или два этапа. В один
этап аккумуляторы заряжаются нормальным
током в течение 12 ч. При заряде в два
этапа после 6 ч заряда нормальным зарядным
током делается перерыв в заряде на 1-2
ч, после чего аккумуляторные батареи
дозаряжают нормальным зарядным током
еще в течение 6 ч. заряда нормальным
зарядом током делается перерыв в заряде
на 1-2 часа, после чего аккумуляторные
батареи дозаряжают нормальным зарядным
током в течение 6 часов.

Форсированный
заряд.
В
случае крайней необходимости для
ускоренного приведения аккумуляторных
батарей в рабочее состояние применяется
режим форсированного заряда, который
предусматривает сокращение времени
пропитки электролитом и отгазовки
аккумуляторов и батарей. Заряд
аккумуляторов и батарей токами, величина
которых превышает ток нормального
заряда.

Заряд в форсированном
режиме сокращает срок службы аккумуляторов
и аккумуляторных батарей и поэтому
заводами-изготовителями допускается
проведение, как правило, не более 10
зарядов в форсированном режиме в течении
гарантийного срока их эксплуатации.

Заряжать в
форсированном режиме разрешается только
исправные аккумуляторные батареи. После
заливки и пропитки электролитом каждый
элемент такой батареи (аккумулятор)
должен иметь НРЦ больше нуля.

Методика выполнения
работ при заряде щелочных аккумуляторов
и аккумуляторных батарей.

Работы
по заряду щелочных аккумуляторов и
аккумуляторных батарей осуществляется
в такой последовательности:

— подготовить
аккумуляторные батареи к заряду;

— рассчитать
электрическую схему заряда аккумуляторных
батарей;


соединить аккумуляторные батареи
последовательно в зарядные группы;

подготовить
зарядные устройства к работе согласно
эксплуатационной документации зарядных
устройств и подключить группы
аккумуляторных батарей к зарядным
устройствам;


зарядить аккумуляторные батареи
стабилизированным током, контролируя
ток заряда, температуру электролита,
уровень электролита, напряжение на
элементах аккумуляторных батарей и
аккумуляторах;


отключить аккумуляторные батареи от
зарядных устройств после окончания
заряда;


установить аккумуляторные батареи с
открытыми заливочными отверстиями для
отгазовки (удаления газов из внутреннего
объема элементов батарей);


довести до нормы уровень и плотность
электролита в элементах аккумуляторных
батарей;

— измерить напряжение
на каждом элементе аккумуляторных
батарей и заполнить журнал учета
технического обслуживания аккумуляторов
и аккумуляторных батарей.

Разница между щелочными и литиевыми батарейками

Отличие состоит в том, что литиевые элементы питания служат в 7 раз дольше. Выдерживают морозы до -40 градусов Цельсия и могут храниться до 10 лет. По напряжению они превосходят щелочные элементы и имеют вольтаж 1.5;3;3.6;3.7 вольт. Держат уровень заряда на одном уровне, а в самом конце резко его теряют. Такие элементы питания будут легче. Их емкость в несколько раз больше. Литиевые батарейки могут взрываться при перезаряде, взаимодействии с водой, повреждении корпуса. Так же отличие имеется в строении.

Но если вы думаете какие батарейки лучше щелочные или литиевые, то непременно это элементы на основе лития.

Основные технические характеристики аккумуляторов

Номинальная емкость аккумулятора

Номинальная емкость элемента – способность накапливать и отдавать электроэнергию постоянного тока, определяет время автономной работы ИБП. Емкость электрического аккумулятора показывает время питания подключенной к нему нагрузки.

Емкость всегда указывается на корпусе АКБ, а также на упаковке, ведь именно по этому критерию большинство пользователей выбирают нужную модель.

Пусковой ток

Величину, характеризующую параметр тока, протекающего в стартере автомобиля в момент пуска силового узла, принято считать пусковым током. Пусковой ток или стартерный возникает в момент, когда в замке зажигания поворачивается ключ и начинает проворачиваться стартер. Единица измерения величины – Ампер. Он же ток холодной прокрутки является показателем, как аккумулятор поведет себя в морозную погоду и сможет запустить двигатель при минусовых показателях. Определяется мощностью тока, которую батарея может выдать в течение первых 30 секунд при температуре -18°С. При высоких показателях пускового тока увеличиваются шансы завести машину при минусовой температуре.

Полярность

Порядок расположения на крышке аккумулятора присоединительных клемм, которые являются токовыводящими соединительными элементами, называется полярностью. Полюса всего два – положительный и отрицательный, вариантов расположения – прямое и обратное.

Прямая полярность – отечественная разработка. Чтобы ее определить, нужно повернуть аккумулятор таким образом, чтобы этикетка была перед глазами. При расположении плюсовой клеммы слева, а минусовой справа, можно утверждать, что акб с прямой полярностью. На иномарках устанавливаются аккумуляторные батареи обратной полярности.

Прямая, обратная полярность

Исполнение корпуса

Корпус большинства аккумуляторов состоит из ударопрочного полипропилена, который характеризуется как материал легкий, не вступающий в химическую реакцию с агрессивным электролитом АКБ. Полипропилен довольно стоек к перепадам температур, возникающих под капотом автомобиля, нагрев может достигать до +60 ̊С, а при морозах до -30°С. Корпус большинства АКБ состоит из ручки для переноса, пробок, индикатора заряда, клемм для подключения к электросети. Вес АКБ емкостью 55Ач около 16,5 кг. Традиционно появились американский, европейский, азиатский и российский типы корпусов.

Европейские корпусы и американские имеют идентичные габариты. Например, у батарей емкостью 60 Ач общая высота от 17,5 до 19 сантиметров. У азиатских этот показатель немного выше, до 22 сантиметров за счет верхнего расположения электродов

Именно поэтому важно корректно анализировать возможности посадочного места под капотом, чтобы надежно закрепить АКБ прижимной планкой и избежать замыкания при случайном касании токоотводами металлических частей кузова

У АКБ с европейским типом корпуса клеммы находятся в углублении, их верхний край не выступает над плоскостью крышки. Иногда клеммы дополнительно защищены от внешнего воздействия специальными крышечками. Азиатский тип корпуса – это коробка, на которой клеммы расположились на верхней крышке, верхний край клемм является самой высокой точкой аккумулятора. Какую клемму снимать с аккумулятора первой читайте здесь. 

Российский стандарт акб

Обозначение Описание букв
А АКБ имеет общую крышку для всего корпуса
З Корпус батареи залит и она является полностью заряженной изначально
Э Корпус-моноблок АКБ выполнен из эбонита
Т Корпус-моноблок АБК выполнен из термопластика
М В корпусе использованы сепараторы типа минпласта из ПВХ
П В конструкции использованы полиэтиленовые сепараторы-конверты

Европейские корпусы и американские имеют идентичные габариты

Тип и размер клемм

Распространены аккумуляторы с клеммами трех разных стандартов: тип Euro – Type 1, и Asia –Type 3, «под болт» – американский стандарт. В типе Euro плюсовая клемма имеет диаметр 19,5 мм, минусовая клемма – 17,9 мм. В типе Asia клемма плюс имеет диаметр 12,7 мм, клемма минусовая – 11,1 мм. Клеммы «под болт» находятся на боковой стенке аккумулятора и сверху. Болт, соединённый с проводом, продевается в отверстие клеммы и фиксируется гайкой.

Американский стандарт

Основные параметры

На корпусе можно сразу заметить надпись alkaline battery. Такая маркировка щелочных батареек дает сразу понять, что это именно они.

Напряжение или ЭДС равно 1.5 – 9 вольт.

Емкость щелочной батарейки доходит до 3000 mAh. Это у самых крупных.

Удельная мощность 100—150 кВт/м³.

Температура, при которой источники тока могут работать от – 30 до + 55 C.

Удельная энергия: 65—90 Вт∙ч/кг;

Производством занимаются такие страны как Россия, США, Китай, Япония.

Форма: цилиндры, прямоугольники, сплющенные диски.

Химия в щелочных батареях

Прежде всего на аноде наблюдается окислительная реакция цинка. Первым делом появляется гидроксид цинка:

Zn + 2OH− → Zn(OH)2 + 2e−

Дальше идет распад на оксид цинка и воду.

Zn(OH)2 → ZnO + H2O

Что же касается катода, то на нем идет реакция восстановления оксида марганца (IV) в оксид марганца (III):

2MnO2 + H2O + 2e− → Mn2O3 + 2OH−

Если электролитом является KOH, то уравнение будет выглядеть следующим образом:

Zn + 2KOH + 2MnO2 + 2e− → 2e− + ZnO + 2KOH + Mn2O3

Когда садиться батарейка щелочной электролит не заканчивается. Это означает что для производства потребуются небольшое его количество. В итоге в такой источник питания добавляют диоксида марганца на полтора раза больше, чем в те же солевые элементы тока.

Устройство

Как же устроен этот накопитель энергии? В общих чертах это было обрисовано, давайте остановимся более детально. Положительный электрод, когда он заряжен, является гидратом окиси никеля с добавками окиси бария и графита. Последний из них увеличивает электропроводимость. Окись бария позитивно сказывается на сроке службы электрода. Отрицательный же состоит главным образом из порошкового железа. Также могут быть его окиси, сернокислый никель и порошок кадмия. Электролит — это едкий калий, в который подмешан моногидрат лития (с расчетом в 20-30 грамм на один литр). Благодаря этой примеси увеличивается общий срок работы батареи. Вот такое устройство щелочного аккумулятора и оно обеспечивает характеристики, что делают данный тип источника энергии популярным.

Рекомендации

  1. Оливетти, Эльза; Джереми Грегори; Рэндольф Кирчайн (февраль 2011 г.). «Влияние на жизненный цикл щелочных батарей с акцентом на окончание срока службы — EBPA-EU» (PDF). Массачусетский технологический институт, лаборатория систем материалов. п. 110. Архивировано с оригинал (PDF) на 2011-10-07. Получено 29 июля 2014.
  2. «Сайт BAJ — Ежемесячная статистика продаж аккумуляторов». Аккумуляторная ассоциация Японии. Март 2011. Архивировано с оригинал на 2010-12-06. Получено 29 июля 2014.
  3. «Absatzzahlen 2008» (PDF) (на немецком). Interessenorganisation Batterieentsorgung. Архивировано из оригинал (PDF) 25 марта 2012 г.. Получено 29 июля 2014.
  4. Фишер, Карен; Валлен, Эрика; Лаенен, Питер Поль; Коллинз, Майкл (18 октября 2006 г.). «Заключительный отчет по оценке жизненного цикла утилизации аккумуляторных батарей для публикации» (PDF). Управление экологическими ресурсами, DEFRA. п. 230. Архивировано с оригинал (PDF) 8 октября 2013 г.. Получено 29 июля 2014.
  5. «Статистика батареи EPBA — 2000». Европейская ассоциация портативных аккумуляторов. 2000. Архивировано с оригинал 21 марта 2012 г.. Получено 29 июля 2014.
  6. Влияние на здоровье . Агентство регистрации токсичных веществ и заболеваний (США).
  7. Бэрд, Габриэль (2011-08-03). «Томас Эдисон дал Лью Урри искру идеи для улучшения щелочных батарей: Greater Cleveland Innovations». cleveland.com . Получено 17 ноября 2014.
  8. Патент США 2960558 (по-английски)
  9. ^ аб Редди, Дэвид Линден, Томас Б. (2001).Справочник аккумуляторов Linden (3-е изд.). Нью-Йорк: Макгроу-Хилл. стр.10–12. ISBN 978-0-07-135978-8 .
  10. Шмидт-Рор, К. (2018). «Как аккумуляторы накапливают и выделяют энергию: объяснение основ электрохимии» J. Chem. Educ.95 : 1801-1810. https://dx.doi.org/10.1021/acs.jchemed.8b00479
  11. С.К. Лоо и Кейт Келлер (август 2004 г.). «Характеристики разряда одноэлементной батареи при использовании повышающего преобразователя TPS61070» (PDF). Инструменты Техаса.
  12. Райан Шоу (февраль 2021 г.). «Зарядные устройства — что вам нужно знать». Который? . Получено 20 мая 2021.
  13. ^ аб Ядав, Г. (2017). «Регенерируемый слоистый катод MnO2 с интеркалированной медью для высокоциклируемых энергоемких батарей».Nature Communications .8 : 14424. Bibcode:2017НатКо … 814424Y. Дои:10.1038 / ncomms14424. ЧВК 5343464. PMID 28262697.
  14. ^ аб Ядав, Гаутам (2017). «Конверсионная щелочная батарея Bi-birnessite / Zn с высокой плотностью энергии, интеркалированной Cu2 +».Журнал химии материалов A .5 (30): 15845. Дои:10.1039 / C7TA05347A.
  15. Департамент экологических . Город Сан-Диего. Получено 5 сентября 2012.
  16. Сырьевая . Архивировано из оригинал 6 октября 2012 г.. Получено 5 сентября 2012.
  17. «Батареи». Информация о предотвращении образования отходов Обмен ионами графита . Калифорнийский департамент переработки и восстановления ресурсов (CalRecycle). Получено 5 сентября 2012.
  18. «Уход за батареями, использование и утилизация | Батареи Duracell».
  19. «Батареи бытовые».
  20. «Магазин». 2016-01-19.
  21. «Магазин Call2Recycle | Call2Recycle | США».
  22. RecycleNation (18 марта 2014 г.). «Как утилизировать щелочные батареи». RecycleNation . Получено 2018-06-09.
  23. Retriev Technologies. «Щелочной». Получено 2019-07-23.

Разновидности

Теперь о видах аккумуляторных батарей, которые могут быть использованы для глубокого разряда.

  • Некоторые разновидности свинцово-кислотных.
  • Щелочные.
  • Li-Ion.
  • Прочие.


 

AGM

Аккумуляторы AGM также относятся к семейству свинцово-кислотных. В электрохимических процессах принципиального отличия нет, но вместо жидкого электролита в AGM стекловолокно им пропитанное. Есть также близкая разновидность – GEL. Там электролит находится в виде геля (серная кислота переводится в гелевое состояние с помощью соединений кремния). Батареи AGM, как и EFB, рекомендуются для использования на автомобилях Старт-Стоп. Но они вполне успешно могут работать там, где требуется глубокий разряд.


 

Литиевые

Чаще всего в роли АКБ глубокого разряда из литиевых встречаются LiFePO4. Они используются в качестве тяговых батарей в различном электротранспорте. Хотя для любых литиевых аккумуляторов глубокое циклирование не является чем-то аномальным. Для них разряд до 15─20% и последующий заряд является нормой. Так работают Li─Ion батареи в смартфонах, планшетах, ноутбуках и прочих устройствах. Но чрезмерный разряд им противопоказан. Поэтому большинство литиевых аккумуляторов работают под управлением контроллеров (BMS плат), не допускающих разряда ниже определённого напряжения.


 

Сравнительная таблица некоторых накопителей энергии

Все полученные выше значения параметров накопителей энергии сведем в обобщающую таблицу. Но вначале заметим, что удельные энергоемкости позволяют сравнивать накопители с обычным топливом.

Основной характеристикой топлива является его теплота сгорания, т.е. количество теплоты, выделяющееся при полном его сгорании. Различают теплоту сгорания удельную (МДж/кг) и объемную (МДж/м3). Переводя МДж в кBт-часы получаем:

Топливо Энергетическая ёмкость (кВт-ч /кг)
Дрова 2,33-4,32
Горючий сланец 2,33 – 5,82
Торф 2,33 – 4,66
Бурый уголь 2,92 -5,82
Каменный уголь ок. 8,15
Антрацит 9,08 – 9,32
Нефть 11,63
Бензин 12,8 кВт-ч/кг, 9,08 кВт-ч/литр

Как видим, удельные энергоёмкости топлива значительно превосходят энергоемкость накопителей энергии. Поскольку в качестве резервного источника энергии часто используются дизельные генераторы, включим в итоговую таблицу энергоемкость дизельного топлива, которая равна 42624 кДж/кг или 11,84 кВт-часа/кг. И добавим для сравнения еще природный газ и водород, поскольку последний тоже может служить основой для создания накопителей энергии.

В результате получим следующую таблицу с параметрами рассмотренных накопителей энергии (последние две строки в этой таблице добавлены для сравнения с традиционными энерго-носителями):

Накопитель энергии Характеристики возможной
реализации накопителя
Запасенная
энергия, КВт*ч
Удельная энергетическая ёмкость,
Вт · час/кг
Максимальное время работы
на нагрузку 100 Вт, минут
Объемная удельная энергоемкость,
Вт · час/дм3
Срок службы,
лет
Копровый Масса копра 2 т, высота
подъема 5 м
0,0278 0.0139 16,7 2,78/объем копра в дм более 20
Гидравлический гравитационный Масса воды 1000 кг, высота перекачки 10 м 0,0286 0,0286 16,7 0,0286 более 20
Конденсаторный Батарея емкостью 1 Ф,
напряжением 250 В, масса 120 кг
0,00868 0.072 5.2 0,0868 до 20
Маховик Стальной маховик массой 100 кг, диаметр 0.4 м, толщина 0.1 м 0,278 2,78 166,8 69,5 более 20
Свинцово-кислотный аккумулятор Емкость 190 А·час, выходное напряжение 12 В, масса 70 кг 1,083 15,47 650 60-75 3 … 5
Пневматический Стальной резервуар объемом 1 м3 массой 250 кг со сжатым воздухом под давлением 50 атмосфер 0,556 22,2 3330 0,556 более 20
Теплоаккумулятор Объем воды 1000 л., нагретой до 80 °C, 58,33 58,33 34998 58,33 до 20
Баллон с водородом Объем 50 л., плотность 0,09 кг/м³, степень сжатия 10:1 (масса 0,045 кг) 1,5 33580 906,66 671600 более 20
Баллон с пропан-бутаном Объем газа 50 л, плотность 0,717 кг/м³, степень сжатия 10:1 (масса 0,36 кг) 3,6 10000 2160 200000 более 20
Канистра с дизельным топливом Объем 50 л. (=40кг) 473,6 11840 284160 236800 более 20

Приведенные в этой таблице цифры очень приблизительны, в расчетах не учтено множество факторов, например, коэффициэнт полезного действия того генератора, который использует сохраненную энергию, объемы и веса необходимого оборудования и так далее. Тем не менее, эти цифры позволяют, на мой взгляд, дать первоначальную оценку потенциальной энергоемкости различных видов накопителей энергии.

И, как следует из приведенной таблицы, наиболее эффективным видом накопителя представляется баллон с водородом. Если для получения водорода используется «дармовая» (избыточная) энергия из возобновляемых источников, то именно водородный накопитель может оказаться самым перспективным.

Водород может использоваться в качестве топлива в обычном двигателе внутреннего сгорания, который будет вращать электрогенератор, либо в водородных топливных ячейках, которые непосредственно производят электроэнергию. Вопрос о том, какой способ выгоднее, требует уже отдельного рассмотрения. Ну, и вопросы безопасности при производстве и использовании водорода могут внести коррективы при рассмотрении целесообразности применения того или иного вида накопителей энергии.

Характеристики щелочных элементов питания

Производители АКБ на основе щелочных растворов указывают следующие характеристики устройств:

  • напряжение – 1,5-10 В (в зависимости от );
  • запас мощности (электрическая емкость) элементов питания различается пропорционально объему компонентов – 1000-3000 мА/ч;
  • рекомендуемая температура для хранения и работы – -30…+50°С.

Параметры напряжения и мощности необходимо учитывать при выборе батареек для работы с токами высоких разрядов. Наибольшая производительность отмечается при чередовании повышенных нагрузок и продолжительного бездействия устройств.

Пять популярных типоразмеров элементов питания.

Различия между солевыми и щелочными элементами питания

Отличие заключается в том, что внутрь каждой кладут разную начинку. И в них происходят отличимые химические реакции.

У солевых используются соли хлорида, а щелочные начиняют гидратом окиси калия. За счет порошкообразного металла вторые служат дольше. В итоге уровень образуемой энергии заметно возрос. По некоторым данным он увеличился в целых 5 раз.

Другое отличие, которое имеют алкалиновые батарейки — это срок службы и условия эксплуатации. Они могут переносить мороз от -20 до +55 или даже +70 градусов Цельсия. Время хранения некоторых подобных элементов доходит до 5 лет. Ходят слухи что появились энергетические элементы, на щелочи, которые можно заряжать. Солевые же источники тока служат до 2-х лет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector